
 1  

Includes corrections for typographical errors caused by Elsevier typsetters 

Equation 66 (missing triple time derivative) 

Equations 69, 70, 73-75, 80, 92-94, 98-100, A20-A26, A28-A33 (italics and missing bold) 

Nomenclature - skew-symmetric angular jounce matrix (missing triple time derivative) 

 

Citation 

 

H.J. Sommer, Kinematic jerk and jounce for multibody dynamics with joint constraints, 

Mechanism and Machine Theory, Volume 196, 2024, 105613 

https://doi.org/10.1016/j.mechmachtheory.2024.105613 

 

Title 

 

Kinematic jerk and jounce for multibody dynamics with joint constraints 

 

Author 

 

H.J. Sommer III 

Mechanical Engineering 

The Pennsylvania State University, University Park, PA 16802 USA 

anvilus9@gmail.com 

 

Highlight 

 

New methods for planar and spatial jerk and jounce were developed and validated for multibody 

dynamics. 

 

Precision for jerk and jounce is equivalent to velocity and acceleration. 

 

These new equations are significantly more accurate than finite difference approximations. 

 

Assembly tolerance of 1e-12 is recommended. 

 

Kinematics developed for this paper are required to explore hyper-dynamic differential algebraic 

equations created by first and second derivatives of equations of motion for multibody systems 

using joint constraint methods. 

 

Abstract 

 

Planar and spatial joint constraint equations for jerk and jounce were derived for multibody 

dynamics.  Exemplar derivations are provided.  Results from kinematically driven numerical 

simulations of these new equations were compared to explicit geometric solutions for planar 

four-bar and inverted slider-crank mechanisms as well as spatial revolute-spherical-universal-

revolute and revolute-spherical-prismatic-universal mechanisms.  Root-mean-square-error 

between velocity, acceleration, jerk and jounce simulations versus explicit solutions were 

normalized by maximum absolute values for comparison.  Relative precisions for new jerk and 

jounce computations were equivalent to relative precisions for extant velocity and acceleration 

computations.  The new equations were significantly more accurate than finite difference 
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approximations previously required for jerk and jounce.  Third and fourth order kinematics 

developed for this paper are required to explore hyper-dynamic differential algebraic equations 

created by first and second derivatives of equations of motion for multibody systems using joint 

constraint methods. 
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1. Introduction 
 

Kinematic jerk is the third time derivative of position and the first time derivative of 

acceleration.  Consequently, jerk in multibody dynamics is related to magnitude of force 

transients that may saturate actuator slew rates, excite vibrations, and propagate acoustic noise.  

Similarly, jounce (also called snap or hyper-jerk) is the fourth derivative of position and the 

second derivative of acceleration.  Jounce is related to frequency content of force transients.  The 

fifth derivative of position is called crackle and the sixth derivative is called pop. 

 

Hayati, et al. [1] provide an interesting review of jerk applied to a wide variety of fields in 

science and engineering.  Historically in mechanism and machine theory, motion trajectories of 

cam-follower systems [2] were designed to minimize jerk and reduce contact wear and vibration.  

More recently, this concept of minimum jerk has been extended to planning motion trajectories 

for robotic manipulators [3-9], computer-controlled machining [10-13], unmanned aircraft [14-

16], and unmanned ground vehicles [17-18].  Additionally, several of these references have 

extended the concept to minimizing jounce trajectories.  Moonie and Johnson [15] planned 

minimum pop trajectories for unmanned aircraft carrying slung loads.  

 

In a similar context, Flash and Hogan [19] demonstrated that humans innately attempt to 

minimize jerk when moving their limbs.  Experimental measurement of jerk has been correlated 

to human movement impairment due to stroke [20-21] and fatigue [22].  Jounce has also been 
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used for analysis of handwriting [23] and arm reaching tasks [24].  Lastly, Saho, et al. [25] have 

shown that deficits in neurological and cognitive function can be identified by anomalous 

variations in velocity, acceleration, jerk, jounce and crackle of limb segments during activities of 

daily living (ADL) such as walking, standing and sit-to-stand movements. 

 

Planar analysis of jerk in mechanisms and machines traditionally used vector loop methods [26] 

and was recently extended to jounce by Figliolini and Lanni [27].  Spatial analysis of jerk and 

jounce has generally focused on screw methods [28-32], Lie theory [33], dual numbers [34-36] 

and incipient motion technique [37].  Denavit-Hartenberg matrix methods were used to compute 

spatial jerk of closed chains by Sommer [38] and to compute generalized force derivatives for 

open chains by Lo Bianco [39].  Urbinati and Pennestri [40] introduced general jerk analyses for 

spatial mechanisms based on constraint methods of Haug [41] but did not provide explicit jerk 

constraints and did not address jounce. 

 

Recently there has been growing interest in computing the first derivative of force for robotics 

[39], biomechanics [42] and controls [43] as well as first and second derivatives of force for 

robotics [44].  To this end, several studies discussed the first derivative of equations of motion 

(EOM) for improved integration of planar multibody systems [45] and for analysis of spatial 

robotics [46-47].  Several authors [48-49] have also explored the second derivative of EOM 

using screw mechanics. 

 

To this end, the goal of this paper is to promote use of first and second derivatives of dynamics 

by extending the joint constraint kinematic methods of Haug, Urbinati and Pennestri.  Specific 

goals are to develop and validate both planar and spatial jerk and jounce kinematics.  These new 

equations will augment current dynamic methods commonly used in commercial simulation 

packages to allow efficient computation of derivatives of force and help improve forward time 

integration. 

 

2.  General kinematic constraints 

 

Position, velocity and acceleration kinematics for multibody dynamics presented by Haug [41] 

are shown in (1-3).  A nomenclature section is provided in Appendix B for readers who are not 

familiar with Haug’s notation.  For nb number of moving bodies, the generalized coordinates 

vector q  will have row order nq=3nb for planar motion and row order nq=6nb for spatial 

motion.  The constraint vector Φ  has row order nc and contains nk number of kinematic joint 

constraint equations describing how mechanical joints restrict degrees of freedom (DOF) and nd 

number of driver constraint equations which drive remaining free mobility of the mechanism 

where nc=nk+nd.  Jacobian q
Φ  has order nc x nq and denotes partial derivatives of constraints 

Φ  with respect to generalized coordinates q .  For kinematically driven inverse dynamics, nc=nq 

to permit inversion of q
Φ and direct solution of (2-3) for q  and q .  Forward dynamics allows 

nc<nq.  Velocity (2) and acceleration (3) equations are respectively first and second time 

derivatives of constraint equation (1) using the chain rule. 

 

0Φ =      order nc x 1 (1) 
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
q t

Φ q = ν ν -Φ      order nc x 1 (2) 

 

( )q q qt ttq
Φ q = γ γ - Φ q q - 2Φ q -Φ      order nc x 1 (3) 

 

The general jerk equation reported by Urbinati and Pennestri [40] is the first time derivative of 

(3) and is provided in (4).  The general jounce equation developed for this paper is the second 

time derivative of (3) and is shown in (5).  These equations are valid for both planar and spatial 

methods and are valid for both open and closed kinematic chains.  These equations are only valid 

for holonomic constraints.  It is important to note that velocity, acceleration, jerk and jounce all 

use the same Jacobian 
q

Φ . 

 

( ) ( )( ) ( )

q

q q qt qt qt t tttq q qq

Φ q = η

η -3 Φ q q - Φ q q q - 3Φ q - 3 Φ q q - 3Φ q -Φ
     order nc x 1 (4) 

 

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )

 
  

 

q

q q q qq q q qq q q

qt qt qt qtt qtt qttt ttttq q qq

Φ q = σ

σ -4 Φ q q - 3 Φ q q - 6 Φ q q q - Φ q q q q

- 4Φ q -12 Φ q q - 4 Φ q q q - 6Φ q - 6 Φ q q - 4Φ q -Φ

     order nc x 1 (5) 

 

It should be noted that the jerk right-hand-side (RHS) term η  is not simply the time derivative of 

the acceleration RHS term γ .  Similarly, the jounce RHS term σ  is not the time derivative of the 

jerk RHS term.  Simplified expressions for acceleration RHS, jerk RHS and jounce RHS are 

provided in (6-8) for scleronomic constraints that are independent of time such as mechanical 

joints. 

 

( ) qqΦγ 
qq−=      order nc x 1 (6) 

 

( ) qqΦγη 
qq−=      order nc x 1 (7) 

 

( ) qqΦησ 
qq−=      order nc x 1 (8) 

 

Consequently, kinematics for a given mechanical joint can be represented by a position 

constraint equation jnt
Φ , respective entries in the kinematic Jacobian jnt

qΦ , velocity RHS jnt
ν , 

acceleration RHS jnt
γ , jerk RHS jnt

η  and jounce RHS jnt
σ .  Velocity RHS jnt

ν  for a mechanical 

joint constraint is zero but velocity RHS dri
ν  for a driver constraint need not be zero. 

 

3.  Planar kinematics 
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Planar position, velocity and acceleration kinematics in (9-12) are presented solely as review for 

those readers who may not be familiar with Haug [41].  Note that all P'
i

s  terms are constant.  

Jerk (13) was reported by Sommer [45] and jounce (14) was developed specifically for this 

paper.  Relative position, velocity, acceleration and jerk vectors used to form planar joint 

constraints are provided in (15-20). 

 

i i

i i

cos sin 0 1

sin cos 1 0

 −  −   
= = =   

    
i i i

A R B R A      order 2x2 (9) 

 
P

i '= +P

i i i
r r A s      order 2x1 (10) 

 
P

i i '= + P

i i i
r r B s      order 2x1 (11) 

 
P 2 P

i i i i i' '= +  − P

i i i
r r B s A s      order 2x1 (12) 

       

( )3 P P

i i i i i i' 3 '= +  −  −  P

i i i i
r r B s A s      order 2x1 (13) 

 

( ) ( )P 2 P 2 4 P

i i ij i i i i i i i i i i6 ' 4 3 '= +  −   −   +  − r r B s A s      order 2x1 (14) 

 
P P P P

ij j i j j j i i id = r - r = r + A s ' - r - A s '      order 2x1 (15) 

 

j i P P P P

ij j i j j j i i id = r - r = r + B s ' - r - B s '      order 2x1 (16) 

 
2 2

j j i i   P P P P P P

ij j i j j j j j i i i i id = r - r = r + B s ' - A s ' - r - B s ' + A s '      order 2x1 (17) 

 

( ) ( )3 P P 3 P P

j j j j j j j j j i i i i i i' 3 ' ' 3 '= +  −  −   −  −  +  P P P

ij j i i i i
d = r - r r B s A s - r B s A s      order 2x1 (18) 

 
Q P

i i i i i
a = r - r = A a '      order 2x1 (19) 

 
Q P

i i i
a ' = s ' - s '      order 2x1 (20) 

 

A planar revolute joint constraint restricts two DOF as shown in (21-23) following Haug [41].  

Jerk RHS for a planar revolute joint introduced by Sommer [45] is provided in (24).  Jounce 

RHS developed for this paper is shown in (25).  Derivations for jerk and jounce of a planar 

revolute joint are provided in Appendix A. 

 

 = = − =r P P

ij j iΦ d r r 0      order 2x1 (21) 

 

      
r P r P

qi 2 i i qj 2 j j
Φ = - I , -B s ' Φ = I , B s '      order 2x3 (22) 
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2 P 2 P

j j j i i i' '=  − r
γ A s A s      order 2x1 (23) 

 
P 3 P P 3 P

j j j j j j j i i i i i i i3 ' ' 3 ' '=   +  −   − r
η A s B s A s B s      order 2x1 (24) 

 

( ) ( )2 4 P 2 P 2 4 P 2 P

j j j j j j j j j j i i i i i i i i i i4 3 ' 6 ' 4 3 ' 6 '=   +  −  +   −   +  −  −  r
σ A s B s A s B s      order 2x1 (25) 

 

A planar double-revolute joint constraint only restricts one DOF as provided in (26-30).  Note 

that Jacobian, acceleration RHS, jerk RHS and jounce RHS terms utilize corresponding terms 

from the planar revolute joint for simplification. 

 

( ) ( )rr 2 2Φ L L 0 L=constant length− = − =
T

T P P P P

ij ij j i j i= d d r - r r - r      order 1x1 (26) 

 

2 2 2 2      
rr T T P T r rr T T P T r

qi ij ij i i ij qi qj ij ij j j ij qj
Φ = -d , -d B s ' = d Φ Φ = d , d B s ' = d Φ      order 1x3 (27) 

 
rrγ 2 2T r T

ij ij ij= d γ - d d      order 1x1 (28) 

 
rrη 6 2T T r

ij ij ij= - d d d η      order 1x1 (29) 

 
rr T T T r

ij ij ij ij ijσ 8 6 2= − − +d d d d d σ      order 1x1 (30) 

 

A planar prismatic joint restricts two DOF and is constructed by combining the planar parallel-1 

and planar parallel-2 constraints below.  Planar parallel-1 constraints in (31-33) are equivalent to 

the second term in Haug’s [41] prismatic (translation) constraint.  Jerk RHS and jounce RHS in 

(33) are consistent with a constant relative rotation angle constraint. 

 
pp1Φ 0T T

i j= a R a      order 1x1 (31) 

 

0 , 0 , 0 , 0 ,      
pp1 T pp1 T pp1

qi i j qj i j qi
Φ = -a a Φ = a a = -Φ      order 1x3 (32) 

 
pp1 pp1 pp1γ =0 η =0 σ =0      order 1x1 (33) 

 

Planar parallel-2 constraints in (34-36) are equivalent to the first term in Haug’s [41] prismatic 

(translation) constraint and provide pin-in-slot motion.   Jerk RHS and jounce RHS are provided 

in (37-38).  Jacobian, acceleration RHS, jerk RHS and jounce RHS terms also utilize 

corresponding terms from the planar revolute joint for simplification. 

 
pp2Φ 0T T

i ij= a R d      order 1x1 (34) 
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0 , 0 ,      

  

pp2 T T T T P T T T r T

qi i i i i i ij i qi i ij

pp2 T T T T P T T r

qj i i j j i qj

Φ = -a R , - a R B s ' - a d = a R Φ - a d

Φ = a R , a R B s ' = a R Φ
     order 1x3 (35) 

 

( )( )pp2 2

i iγ 2 T T r

i ij ij= a d + R d + γ      order 1x1 (36) 

 

( ) ( )( )pp2 3 2

i i ij i i i i  η 3 3 3 3     T T r

i ij ij ij ij= a d + d - d + R d + d + η      order 1x1 (37) 

 

( )( )

( )( )

3 2

i ij i ij i i ij i i ij
pp2

T 2 2 4 r

i ij i i ij i i i i ij

4 6 4 6
σ

6 12 4 3

  +  +  −  −  
 
  +  +   +   +  −  +
 

T

i

d d d d
= a

R d d d σ
     order 1x1 (38) 

 

The relative coordinate driver constraint in (39-40) may be used to control absolute 

location/attitude of a body or relative location/attitude between two bodies.  Common 

applications are ( )K 0=  for an absolute rotation driver between body j and ground, ( )K 1=  for a 

relative rotation driver between two bodies i and j, ( )j j jK , substitute x or y for , f (t) 0=   =  for 

pure rolling of body i with radius   in a horizontal/vertical direction, and ( )i jK / , f (t) 0= −  =  

for a gear ratio constraint between two fixed external gears i and j with pitch radii i  and j .  An 

internal gear pair would have a positive ratio of K.  The relative gear ratio constraint between 

two gears i and j on a rotating frame m required for an epicyclic gear train is provided in (41-43). 

 
rcd

j iΦ K C f (t) 0 K=constant, C=constant=  −  − − =      order 1x1 (39) 

 
rcd rcd rcd rcd

t tt ttt ttttν =f γ =f η =f σ =f      order 1x1 (40) 

 

( ) ( )rgr

j m i mΦ K C 0 K=constant, C=constant=  −  −  −  − =      order 1x1 (41) 

 

     rgr rgr rgr

qi qj qm0, 0, K 0, 0,1 0, 0, K 1= − = = −Φ Φ Φ      order 1x3 (42) 

 
rgr rgr rgr rgrν =0 γ =0 η =0 σ =0      order 1x1 (43) 

 

The planar parallel-2 distance driver shown in (44-45) is equivalent to Haug’s [41] relative 

translational driver.  Velocity, acceleration, jerk and jounce terms are shown in (46-49).  Pure 

rolling of a wheel with radius   along a line can be modelled by adding the relative rotation 

constraint to the parallel-2 distance driver.  The location of the center of the wheel will be related 

to the rotation between the two bodies as shown in (50-52). 

 
pp2dd T

i ij iΦ / L f (t) 0 L =constant length= − = =a d a       order 1x1 (44) 
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pp2dd T T P T T pp2dd T T P

qi i i i i i ij qj i i j j, ' / L , ' / L   = − − + =   Φ a a B s a R d Φ a a B s      order 1x3 (45) 

 
pp2dd

tν = f      order 1x1 (46) 

 

( )( )pp2dd T T 2

i ij i ij i ttγ 2 / L f= −  +  + +r
a R d d γ      order 1x1 (47) 

 

( ) ( )( )pp2dd T T 3 2 r

i ij i ij i ij i ij i i ij i tttη 3 3 3 3 / L f= −  +  −  +   +  + +a R d d d d d η      order 1x1 (48) 

 

( )( )

( )( )

T 3 2

ij i ij i ij i i ij i i
pp2dd T

i tttt
2 2 4 r

ij i ij i i ij i i i i

4 6 4 6
σ / L f

6 12 4 3

 −  +  +  −  −  
 = +
  +  +   +   +  −  +
 

R d d d d
a

d d d σ
     order 1x1 (49) 

 

( )roll T

i ij j i iΦ / L C 0 L =constant, ρ=constant, C=constant= −   −  − = =a d a      order 1x1 (50) 

 
roll T T P T T roll T T P

qi i i i i i ij qj i i j j, ' / L , ' / L   = − − + +  = −    Φ a a B s a R d Φ a a B s      order 1x3 (51) 

 
roll roll pp2dd roll pp2dd roll pp2ddν =0 γ =γ η =η σ =σ      order 1x1 (52) 

 

The planar relative distance driver shown in (53-55) is based on the planar double-revolute 

constraint but uses distance as a function of time.  It is much more difficult to add pure rolling to 

this constraint in that it uses the square of driver distance.  Driver distance should never be 

negative. 

 

( )
2prdd T

ij ijΦ f (t) 0 f (t) 0= − = d d      order 1x1 (53) 

 
rr

qj

prdd

qj

rr

qi

prdd

qi ΦΦΦΦ ==      order 1x3 (54) 

 
prdd prdd rr 2

t t tt

prdd rr prdd rr 2

t tt ttt tt t ttt tttt

ν =2 f f γ =γ +2 f +2 f f

η =η +6 f f +2 f f σ =σ +6 f +8 f f +2 f f
     order 1x1 (55) 

 

4.  Planar validation 

 

Explicit geometric solutions for position, velocity, acceleration, jerk and jounce of four-bar and 

inverted slider-crank mechanisms shown in Figure 1 were used for planar validation.  The 

geometric solutions were validated using complex number loop equations. 
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Figure 1 – Four-bar (left) and inverted slider-crank (right) planar mechanisms (AD = 13.21 cm, 

AB = 4.00 cm, BC = 14.23 cm, CD = 20.31 cm, EF = 7.00 cm, FG = 2.00 cm,  = output). 

 

Three kinematically driven numerical simulations were used to validate planar jerk and jounce 

constraints reported above.  Input driver constraints were sinusoidal functions of time to provide 

non-zero driver jerk and jounce. The first planar numerical simulation was a four-bar mechanism 

with links 2 and 4 pinned to ground by revolute joints at points A and D and connected by a 

double-revolute constraint between points B and C (nq=6, nc=5, nd=1).  Link 2 was driven by 

an absolute angle rotation driver  as shown in (56) with START  = 30 deg and DELTA  = 60 deg.  

Output   was the angle of link 4.  The second planar numerical simulation was an inverted 

slider-crank with links 2 and 4 pinned to ground by revolute joints at points E and F, a prismatic 

joint between link 2 and slider block 3, and a revolute joint at G between links 3 and 4 (nq=9, 

nk=8, nd=1).  Planar parallel-1 and parallel-2 constraints were used to model the prismatic joint.  

Slider block 3 was driven by a planar parallel-2 distance driver and output   was the angle of 

link 4.  The third numerical simulation was the same as the second but used a planar relative 

distance driver for the slider block. 

 

( )START DELTA sin 2 t / 2 sec h t 0.01sec =  +     = =  =  (56) 

 

Nominal assembly tolerance of 1e-12 was used to terminate iterative Newton-Raphson position 

solutions.  All calculations were performed using MATLAB version R2019b [50]. 

 

Root-mean-square error (RMSE) between jerk simulations and geometric solutions for angular 

jerk of the output link of the planar four-bar mechanism was 1.07e-13 rad/sec3 over one full 

cycle of the driver as shown in Figure 2.  RMSE for jounce was 9.7e-13 rad/sec4 as shown in 

Figure 3. 
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Figure 2 – Jerk simulation for planar four-bar mechanism (top) and error between jerk simulation 

and geometric validation solution (bottom) using nominal assembly tolerance of 1e-12. 
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Figure 3 – Jounce simulation for planar four-bar mechanism (top) and error between jounce 

simulation and geometric validation solution (bottom) using nominal assembly tolerance of 1e-

12. 

 

To assess the influence of assembly tolerance, the simulations were repeated for assembly 

tolerance ranging from 1e-14 to 1e-4.  RMSE for planar velocity, RMSE for planar acceleration, 

RMSE for planar jerk and RMSE for planar jounce were normalized by their respective 

maximum absolute values and are shown as functions of assembly tolerance in Figure 4.  

Normalized errors for planar jerk and jounce were effectively equal to normalized errors for 

planar velocity and acceleration.  Normalized errors were at the computational accuracy floor of 

1e-15 for assembly tolerance smaller than 1e-11. 
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Figure 4 – Relationship between assembly tolerance and RMSE for velocity, acceleration, jerk 

and jounce simulations of planar four-bar mechanism. 

 

Historically, computation of jerk and jounce required using first derivative and second derivative 

finite difference (FD) approximations applied to acceleration simulations.  The second order 

central difference approximations shown in (57) and the fourth order central difference 

approximations provided in (58) from Fornberg [51] were applied to acceleration simulations to 

estimate FD jerk and jounce.  Normalized RMSE between these FD approximations and 

geometric solutions are shown as functions of simulation time step in Figure 5 for nominal 

assembly tolerance of 1e-12.  Normalized RMSE for planar jerk and jounce from new equations 

presented above are also shown in Figure 5. 

 

( ) ( ) 2

k k 1 k 1 k k 1 k k 1u u u / 2h u u 2u u / h− + − + − +  − +  SECOND ORDER FD (57) 

 

( )

( )

k k 2 k 1 k 1 k 2

2

k k 2 k 1 k k 1 k 2

u u 8u 8u u /12h

u u 16u 30u 16u u /12h

− − + +

− − + +

 − − −

 − + − + −
 FOURTH ORDER FD (58) 
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Figure 5 – Relationship between simulation time step and normalized root-mean-square error 

(RMSE) for new planar jerk equations (top) and new planar jounce equations (bottom) compared 

to second and fourth order finite difference (FD) derivatives for planar four-bar simulations. 

 

Normalized errors for new planar jerk and jounce equations developed for this paper are 

independent of simulation time step as expected and are significantly better than FD 

approximations. 

 

Results from inverted slider-crank simulations are provided in Figures 6 and 7 and are very 

similar to corresponding four-bar graphs. 
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Figure 6 – Relationship between assembly tolerance and RMSE for velocity, acceleration, jerk 

and jounce simulations of planar inverted slider-crank mechanism. 
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Figure 7 – Relationship between simulation time step and normalized root-mean-square error 

(RMSE) for new planar jerk equations (top) and new planar jounce equations (bottom) compared 

to second and fourth order finite difference (FD) derivatives for planar inverted slider-crank 

simulations. 

 

5.  Spatial kinematics 

 

Spatial position, velocity and acceleration kinematics in (59-62) follow Haug [41].  The skew-

symmetric operator shown in (60) is equivalent to a cross-product.  Jerk (63-64) and jounce (65-

66) were developed for this paper by taking time derivatives of acceleration (62).  Relative 

position, velocity, acceleration and jerk vectors used to form planar constraints are provided in 

(67-72). 

 

 P P

i i i i
r = r + A s '      order 3x1 (59) 

 

 

i x i z i y

i y i z i x

i z i y i x3x1 3x3

ω ' 0 -ω ' ω '

for ω ' then ω ' 0 -ω '

ω ' -ω ' ω ' 0

i i
ω ' = ω ' =      order 3x3 (60) 



 16  

 

 P P

i i i i i
r = r + A ω 's '      order 3x1 (61) 

 

 
P P P

i i i i i i i i ir = r + A ω 's ' + A ω 'ω 's '      order 3x1 (62) 

 

 'i i i i i i i iΗ 2ω 'ω ' ω 'ω ' ω 'ω 'ω '      order 3x3 (63) 

 

 ( ' )P P

i i i i i ir r A H ω ' s '      order 3x1 (64) 

 

i i i i i i i i i i i i i i i i i i i iW' = ω 'ω '+ 3ω 'ω '+ 3ω 'ω '+ω 'ω 'ω '+ 2ω 'ω 'ω '+ 3ω 'ω 'ω '+ω 'ω 'ω 'ω '      order 3x3 (65)

  

 
P P

i i i i i i
r = r A W' ω ' s '      order 3x1 (66) 

 
P P P P

ij j i j j j i i id = r - r = r + A s ' - r - A s '      order 3x1 (67) 

 
P P P P

ij j i j j j j i i i id = r - r = r + A ω 's ' - r - A ω 's '      order 3x1 (68) 

 
P P P P P P

ij j i j j j j j j j j i i i i i i i i
d = r - r = r + A ω 'ω 's ' + A ω 's ' - r + A ω 'ω 's ' + A ω 's '      order 3x1 (69) 

 

( ' ) ( ' )P P P P

ij j i j j j j j i i i i i
d r r r A H ω ' s ' r A H ω ' s '      order 3x1 (70) 

 
Q P

i i i i i
a = r - r = A a '      order 3x1 (71) 

 
Q P

i i i
a ' = s ' - s '      order 3x1 (72) 

 

Transformations for angular velocity and angular acceleration between global and local body-

fixed directions are provided in (73-74).  Interestingly, transformations for angular jerk and 

angular jounce in (75-76) require additional terms. 

 
T

i i i i i i
ω = A ω ' ω ' = A ω      order 3x1 (73) 

 
T

i i i i i i
ω = A ω ' ω ' = A ω      order 3x1 (74) 

 

( ) ( )T

i i i i i i i i i iω = A ω '+ω 'ω ' ω ' = A ω -ω ω      order 3x1 (75) 

 

( )( )

( )( )

2

2

+

− −

i i i i i i i i i

T

i i i i i i i i i

ω = A ω '+ ω 'ω ' ω '+ω 'ω ' ω '

ω ' = A ω - ω ω ω ω ω ω

     order 3x1 (76) 
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Spatial mechanical joints are modelled using four basic constraints provided below (spherical, 

double-spherical, spatial dot-1 and spatial dot-2) as described by Haug section 9.4.4 [41].  A 

spherical joint restricts three DOF and a double-spherical joint only restricts one DOF as shown 

below.  A universal joint restricts four DOF and is modelled using a spherical constraint and one 

dot-1 constraint.  A spatial revolute joint restricts five DOF and is modelled using a spherical 

constraint, one dot-1 constraint and one dot-2 constraint.  A cylindrical joint restricts four DOF 

and is modelled using two dot-1 constraints and two dot-2 constraints. A spatial prismatic joint 

restricts five DOF and is modelled using three dot-1 constraints and two dot-2 constraints.  

Lastly a mechanical screw joint restricts five DOF and is modelled using two dot-1 constraints, 

two dot-2 constraints and a distance driver with f(t)=0. 

 

Spherical joint constraints are shown in (77-80) following Haug [41].  Jerk RHS and jounce RHS 

were developed for this paper as shown in (81-82).  Derivations are provided in Appendix A.   

 
s P P

ij j iΦ = d = r - r = 0      order 3x1 (77) 

 
s s

ri 3 rj 3Φ = -I Φ = I      order 3x3 (78) 

 
s P s P

πi ' i i πj ' j jΦ = A s ' Φ = -A s '      order 3x3 (79) 

 
s P P

i i i i j j j jγ = A ω 'ω 's ' - A ω 'ω 's '      order 3x1 (80) 

 
s P P

i i i j j jη = A Η 's ' - A Η 's '      order 3x1 (81) 

 
s P P

i i i j j jσ = A W's ' - A W's '      order 3x1 (82) 

 

Spatial double-spherical joint constraints are provided in (83-88).  Note that Jacobian, 

acceleration RHS, jerk RHS and jounce RHS terms utilize corresponding terms from the spatial 

spherical for simplification. 

 
ss 2 2Φ L ( ) ( ) L 0 L=constant lengthT P P T P P

ij ij j i j i= d d - = r - r r - r -      order 1x1 (83) 

 

2 2ss T ss T

ri ij rj ijΦ = - d Φ = d      order 1x3 (84) 

 
ss ss

πi ' πj 'Φ 2 2 Φ 2 2T P T s T P T s

ij i i ij πi ' ij j j ij πj '= d A s ' = d Φ = - d A s ' = d Φ      order 1x3 (85) 

 
ssγ 2 2T T s

ij ij ij= - d d + d γ      order 1x1 (86) 

 
ssη 6 2T T s

ij ij ij= - d d + d η      order 1x1 (87) 

 
ss 8 T T T s

ij ij ij ij ij= -6d d - d d + 2d σ      order 1x1 (88) 
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Spatial dot-1 constraints in (89-92) correct minor typographical errors for acceleration in Haug 

section 9.6.3 [41].  Jerk RHS and jounce RHS in (93-94) were developed for this paper. 

 
d1Φ 0T

i j= a a      order 1x1 (89) 

 

= [0, 0, 0] = [0, 0, 0]d1 d1

ri rjΦ Φ      order 1x3 (90) 

 
d1 d1

πi ' πj 'Φ ΦT T T T

j j i i i i j j= -a ' A A a = -a ' A A a      order 1x3 (91) 

 

( )d1 T T T T T

j j i i i j j i i j j j i i
γ = -a ' A A ω 'ω '+ 2ω ' A A ω '+ω 'ω 'A A a '      order 1x1 (92) 

 

( )

( )

d1η 3

3

T T T T T T

j j i i i i i j j j j j j j j i i i

T T

i i i i i j j j

= -a ' A A Η 'a ' - a ' A A Η 'a ' - a ' ω 'ω '-ω ' A A ω 'a '

- a ' ω 'ω '-ω ' A A ω 'a '
     order 1x1 (93) 

 
d1

i

σ

( ) ( )

( ) ( )

T T T T

j j i i i i i j j j

T T T T

j j j i i i i i i j j j j

T T

j j j j j i i i i i

= -a ' A A W'a '- a ' A A W'a '

4a ' ω 'A A H '+ω ' a ' 4a ' ω 'A A H '+ω ' a '

- 6a ' ω 'ω '-ω ' A A ω 'ω '+ω ' a '

     order 1x1 (94) 

 

Spatial dot-2 constraints in (95-98) follow Haug [41] and provide point-on-line motion.   Jerk 

RHS and jounce RHS are provided in (99-100).  Jacobian, acceleration RHS, jerk RHS and 

jounce RHS terms utilize corresponding terms from the spatial spherical for simplification. 

 
d2Φ ( ) 0T T P P

i ij i j i= a d = a r - r      order 1x1 (95) 

 
d2 T T T d2 T T T

ri i i i rj i i iΦ = -a ' A = -a Φ = a ' A = a      order 1x3 (96) 

 
s

i

d2 T P T d2 T T P T

π ' i i ij i i πj ' i i j j i πj 'Φ = a ' s ' -d A a ' Φ = -a ' A A s ' = -a Φ      order 1x3 (97) 

 
d2 T T T T s

ij i i i ij i i i i i iγ = -2d A ω 'a ' -d A ω 'ω 'a '+a ' A γ      order 1x1 (98) 

 
d2η ( )T T T T T s

ij i i i ij i i i i i ij i i i i i
= -3d A ω 'a '- 3d A ω 'ω '+ω a '-d A Η 'a '+a ' A η       order 1x1 (99) 

 
d2σ ( ) ( )T T T

ij i i i ij i i i i i ij i i i i

T T T s

ij i i i i i

= -4d A ω 'a ' - 6d A ω 'ω '+ω ' a ' - 4d A ω '+Η ' a '

- d A W'a ' + a ' A σ
      order 1x1 (100) 
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The fixed revolute rotation driver for body i with driver angle  about fixed unit vector û  and 

Euler parameter quaternion 0 1 2 3= [e , e , e , e ]T

i
p  is provided in (101-102).  Corresponding velocity, 

acceleration, jerk and jounce terms are presented in (103). 

 

( ) ( )frrd 2 2 2

1 2 3 0Φ f (t) 0 sin / 2 e e e cos / 2 e=  − =  = + +  =      order 1x1 (101) 

 

ˆ[0, 0, 0]=frrd frrd T

ri π'i
Φ Φ = u      order 1x3 (102) 

 
frrd frrd frrd frrd

t tt ttt ttttν =f γ =f η =f σ =f      order 1x1 (103) 

 

The spatial relative distance driver shown in (104-106) is based on the double-spherical 

constraint.  Velocity, acceleration, jerk and jounce terms are shown in (107).  Again, driver 

distance should never be negative. 

 

( )
2srdd T

ij ijΦ f (t) 0 f (t) 0= − = d d      order 1x1 (104) 

 
srdd ss srdd ss

ri ri rj rjΦ =Φ Φ =Φ      order 1x3 (105) 

 
srdd ss srdd ss

π'i π'i π'j π'jΦ =Φ Φ =Φ      order 1x3 (106) 

 
srdd srdd ss 2

t t tt

srdd ss srdd ss 2

t tt ttt tt t ttt tttt

ν =2 f f γ =γ +2 f +2 f f

η =η +6 f f +2 f f σ =σ +6 f +8 f f +2 f f
     order 1x1 (107) 

 

The spatial dot-2 distance driver shown in (108-111) is an extension of the dot-2 constraint. 

 
d2dd T

i ij iΦ / L f (t) 0 L =constant length= − = =a d a      order 1x1 (108) 

 

/ L / Ld2dd d2 d2dd d2

ri ri rj rjΦ =Φ Φ =Φ      order 1x3 (109) 

 

/ L / L= =d2dd d2 d2dd d2

πi ' πi ' πj ' πj 'Φ Φ Φ Φ      order 1x3 (110) 

 
d2dd d2dd d2 d2dd d2 d2dd d2

t tt ttt ttttν =f γ =γ /L+f η =η /L+f σ =σ /L+f      order 1x1 (111) 

 

6.  Spatial validation 
 

Explicit geometric solutions for position, velocity, acceleration, jerk and jounce of the revolute-

spherical-universal-revolute (RSUR) mechanism shown in Figure 8 and the revolute-spherical-

prismatic-universal (RSPU) mechanism shown in Figure 9 were used for spatial validation. The 

geometric solutions were validated using Denavit-Hartenberg matrix loop methods reported by 

Sommer [38]. 
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Figure 8 – Revolute-spherical-universal-revolute (RSUR) spatial mechanism (OA = 20.43 cm, 

AB = 4.00 cm, CD = 10.00 cm, OD = 19.97 cm, BC = 30.42 cm,  = input,  = output). 

 

 
 

Figure 9 – Revolute-spherical-prismatic-universal (RSPU) spatial mechanism (OA = 20.43 cm, 

AB = 4.00, OD = 19.97 cm, d = BD = input  = output). 
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Four kinematically driven numerical simulations were developed to validate the spatial 

constraints reported above.  Input driver constraints were sinusoidal functions of time similar to 

(56) to provide non-zero driver jerk and jounce.  The first RSUR spatial numerical simulation 

used a spherical constraint and two dot-1 constraints for the revolute joint at point A, a spherical 

constraint at point B, a spherical and one dot-1 constraint for the universal joint at point C, and 

another spherical with two dot-1 constraints for the revolute joint at point D (nq=18, nk=17, 

nd=1).  The revolute joint at A was driven by a fixed revolute rotation driver .  Output was the 

angle   of link CD.  The second spatial numerical simulation used only two rotating links 

connected to ground by revolute joints at points A and D.  A double-spherical constraint was used 

to connect points B and C forming a revolute-spherical-spherical-revolute (RSSR) mechanism 

(nq=12, nk=11, nd=1).  Again, the revolute joint at A was driven by a fixed revolute rotation 

driver.  The third spatial numerical simulation was an RSPU mechanism that modelled the 

prismatic joint by two dot-1 constraints (spatial parallel-1), two dot-2 constraints (spatial 

parallel-2) and one additional dot-1 constraint (nq=18, nk=17, nd=1).  The distance d between 

points B and D was driven by a spatial relative distance driver and the output was revolute angle 

.  Lastly, the fourth spatial numerical simulation used the same RSPU mechanism but with a 

spatial dot-2 distance driver for distance d. 

 

Nominal assembly tolerance of 1e-12 was used to terminate iterative Newton-Raphson position 

solutions.  All calculations were performed using MATLAB version R2019b [50]. 

 

RMSE between jerk simulations and geometric solutions for angular jerk of the output link of the 

RSUR was 2.17e-14 rad/sec3 over one full cycle of the driver and RMSE for jounce was 3.81e-

13 rad/sec4. 

 

Again, RMSE for spatial velocity, RMSE for spatial acceleration, RMSE for spatial jerk and 

RMSE for spatial jounce were normalized by their respective maximum absolute values and are 

shown as functions of assembly tolerance in Figure 10.  Normalized errors for spatial jerk and 

jounce were effectively equal to normalized errors for spatial velocity and acceleration and were 

at the computational accuracy floor of 1e-15 for assembly tolerance smaller than 1e-12.   

Similar results were observed for RSSR simulations. 
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Figure 10 – Relationship between assembly tolerance and RMSE for velocity, acceleration, jerk 

and jounce simulations of spatial RSUR mechanism. 

 

Normalized RMSE between second and fourth order FD approximations for spatial jerk and 

jounce and corresponding geometric solutions are shown as functions of simulation time step in 

Figure 11.  Normalized RMSE for spatial jerk and jounce from new equations presented above 

are also shown in Figure 11. Similarly to planar results, new spatial jerk and jounce equations are 

significantly more accurate than FD approximations and are independent of simulation time step. 
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Figure 11 – Relationship between simulation time step and normalized root-mean-square error 

(RMSE) for new spatial jerk equations (top) and new spatial jounce equations (bottom) 

compared to second and fourth order finite difference (FD) derivatives for spatial RSUR 

mechanism. 

 

Results from RSPU simulations are provided in Figures 12 and 13 and are very similar to 

corresponding RSUR graphs. 



 24  

 
 

Figure 12 – Relationship between assembly tolerance and RMSE for velocity, acceleration, jerk 

and jounce simulations of spatial RSPU mechanism. 
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Figure 13 – Relationship between simulation time step and normalized root-mean-square error 

(RMSE) for new planar jerk equations (top) and new planar jounce equations (bottom) compared 

to second and fourth order finite difference (FD) derivatives for spatial RSPU simulations. 

 

7.  Conclusions 

 

New equations for planar and spatial jerk and jounce were successfully validated against explicit 

geometric solutions.  Kinematically driven simulations of planar four-bar and inverted slider-

crank mechanisms as well as spatial RSUR and RSPU mechanisms tested these new equations. 

 

It was very easy to modify extant velocity and acceleration simulation code because jerk and 

jounce solutions used the same Jacobian q
Φ .  The only additional code required was to assemble 

jerk RHS η  and jounce RHS σ  vectors.  This has two implications for implementing jerk and 

jounce into extant commercial simulation packages.  First, execution time for commercial 

simulations will not be adversely affected because the inverse of the Jacobian is already available 

for velocity and acceleration solutions.  This is particularly important for large scale spatial 

simulations with many moving bodies where the Jacobian can become very large with order 6nb 

and inversion can be computationally expensive. Secondly, the additional computational burden 



 26  

to assemble jerk RHS η  and jounce RHS σ  vectors is relatively small as demonstrated by 

Sommer [45] for forward dynamics of planar mechanisms. 

 

Differences between kinematic simulations and explicit geometric solutions reported in Figures 

4, 6, 10 and 12 were directly related to assembly tolerance used to terminate iterative Newton-

Raphson position solutions.  Assembly tolerance of 1e-12 is recommended.  This indicates that 

position residual error generated during forward time integration of multibody differential 

algebraic equations (DAE) must be smaller than 1e-12 for accurate results. 

 

Relative precisions for new jerk and jounce computations are equivalent to relative precisions for 

velocity and acceleration computations.  The new equations are significantly more accurate than 

second and fourth order FD approximations and are independent of simulation time step as 

shown in Figures 5, 7, 11 and 13. These new equations completely preclude artifactual phase lag 

in real-time computations of jerk and jounce using backward difference FD approximations.  

 

Planar jerk kinematics for revolute joints were used to develop hyper-dynamic third-order DAE 

for two planar rigid body mechanisms [45] using the first derivative of EOM.  Hyper-dynamic 

DAE computed multibody jerk along with time derivatives of constraint reaction forces.  That 

study showed that forward time integration of jerk simultaneously with acceleration using 

Obreshkov integrators provided nominally ten times more accurate results compared to 

traditional simulations of EOM that only integrated acceleration.  The implication is that 

incorporating jerk into commercial simulation packages could significantly increase integration 

accuracy or, conversely, decrease computation time for a given accuracy expectation. 

 

Planar jerk equations developed for this paper allow simulation of first derivative of planar EOM 

to be expanded with more kinematic joints and drivers beyond only revolute joints.  Spatial jerk 

equations developed for this paper now enable simulation of spatial hyper-dynamic DAE 

provided by Sommer [45] in Appendix B for future work.  Planar and spatial jounce equations 

are now available to formulate second derivative of EOM using joint constraint kinematics as an 

alternative to screw mechanics [48-49].  
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Appendix A – Derivations of jerk and jounce right-hand-side vectors 

 

Derivations of jerk RHS η  and jounce RHS σ  for a planar revolute joint and for a spatial 

spherical joint are provided as exemplars of derivations for other joint and driver RHS vectors. 

 

Jerk RHS r
η  for a planar revolute joint must conform to (7) as shown in (A1).  Jacobian terms 

from (22) and acceleration RHS r
γ  from (23) and are reproduced in (A2-A3) for convenience.  

The first time derivative of the acceleration RHS is shown in (A4).  Generalized accelerations for 

a revolute joint are shown in (A5) and their product with Jacobian terms is shown in (A6).  

Partial derivatives with respect to generalized coordinates are shown in (A7) and the final 

product with generalized velocities is provided in (A8).  Substituting into (A1) provides jerk 

RHS r
η  in (A9) which matches (24). 
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r

q i j 'P 'P
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Jounce RHS r
σ  for a revolute joint must conform to (8) as shown in (A10).  The first time 

derivative of the jerk RHS is provided in (A11).  Generalized jerks for a revolute joint are shown 

in (A12) and their product with Jacobian terms is shown in (A13).  Partial derivatives with 

respect to generalized coordinates are shown in (A14) and the final product with generalized 

velocities is provided in (A15).  Substituting into (A10) provides jounce RHS r
σ  in (A16) which 

matches (25). 
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Jerk RHS s
η  for a spherical joint must conform to (7) as shown in (A17).  Jacobian terms from 

(78-79) and acceleration RHS s
γ  from (80) and are reproduced in (A18-A20) for convenience.  

The first time derivative of the acceleration RHS is provided in (A21).  Generalized accelerations 

for a spherical joint are shown in (A22) and their product with Jacobian terms is shown in (A23).  

Partial derivatives with respect to generalized coordinates are shown in (A24) and the final 
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product with generalized velocities is provided in (A25).  Substituting into (A17) provides jerk 

RHS s
η  in (A26) which matches (81). 
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Jounce RHS s
σ  for a spherical joint must conform to (8) as shown in (A27).  The first time 

derivative of the jerk RHS is provided in (A28-A29).  Generalized jerks for a spherical joint are 

shown in (A30) and their product with Jacobian terms is shown in (A31).  Partial derivatives 

with respect to generalized coordinates are shown in (A32) and the final product with 

generalized velocities is provided in (A33).  Substituting into (A27) provides jounce RHS s
σ  in 

(A34) which matches (82). 
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Appendix B - Nomenclature 

 

general vector/matrix dimensions 

nb number of moving bodies   

nc number of constraints (nc=nk+nd) 

nd number of kinematic driver constraints 

nk number of kinematic joint constraints 

nq number of generalized coordinates (nq=3nb planar, nq=6nb spatial) 

 

subscripts 

i subscript denoting body i 

j subscript denoting body j 

k subscript for sample index within discretized sequence (see ku ) 

m subscript denoting body m 

q subscript denoting partial derivatives with respect to all generalized coordinates q  

qi subscript denoting partial derivatives with respect to generalized coordinates for only body 

i 

qj subscript denoting partial derivatives with respect to generalized coordinates for only body 

j 

qm subscript denoting partial derivatives with respect to generalized coordinates for only body 

m 

ri subscript denoting partial derivatives with respect to i
r  location of body i  

i '  subscript denoting partial derivatives with respect to i '  body-fixed directions for body i  

t subscript denoting partial derivative with respect to time 

x subscript for x coordinate component 
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y subscript for y coordinate component 

z subscript for z coordinate component 

 

general superscripts 

P superscript for point P 

Q superscript for point Q 

( )'  prime symbol denotes local body-fixed coordinate directions 

 

superscripts for joint/driver constraints 

dri general kinematic driver constraint 

d1 spatial dot-1 kinematic constraint 

d2 spatial dot-2 kinematic constraint 

d2dd spatial dot-2 distance driver constraint 

frrd spatial fixed revolute rotation driver constraint 

jnt general kinematic joint constraint 

pp1 planar parallel-1 kinematic constraint 

pp2 planar parallel-2 kinematic constraint 

pp2dd planar parallel-2 distance driver constraint 

prdd planar relative distance driver constraint 

r planar revolute kinematic joint constraint 

rcd planar relative coordinate driver constraint 

rgr planar relative gear ratio driver constraint 

rr planar double-revolute kinematic joint constraint 

roll planar rolling along line driver constraint 

s spatial spherical kinematic joint constraint 

ss spatial double-spherical kinematic joint constraint 

srdd spatial relative distance driver constraint 

 

scalars 

C general constant 

K general constant 

L constant length 

d distance BD for revolute-spherical-prismatic-universal (RSPU) mechanism 

f(t) function of time 

h constant time step t  

t time 

ku  sample k of variable u discretized at equal intervals h 

  rotation angle 

  rolling radius of wheel or pitch radius of gear 

  time period of oscillation for sinusoidal driver 

  output rotation angle 

i  orientation angle for body i (planar only) 

i  angular velocity for body i (planar only) 

i  angular acceleration for body i (planar only) 
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i  angular jerk for body i (planar only) 

i  angular jounce for body i (planar only) 

 

column vectors 

i
a  location of point Q on body i relative to point P on body i measured in global directions 

(2x1 planar, 3x1 spatial) 

i
a '  location of point Q on body i relative to point P on body i measured in local body-fixed 

directions (2x1 planar, 3x1 spatial) 

ijd  location of point P on body j relative to point P on body i measured in global directions 

(2x1 planar, 3x1 spatial) 

i
p  Euler parameter unit quaternion describing attitude of body i (4x1 spatial) 

q  all generalized coordinates (nq x 1) 

q  all generalized velocities (nq x 1) 

q  all generalized accelerations (nq x 1) 

q  all generalized jerks (nq x 1) 

q  all generalized jounces (nq x 1) 

i
q  generalized coordinates for body i (3x1 planar, 6x1 spatial) 

i
r  global location of frame attached to body i (2x1 planar, 3x1 spatial) 

i
r  velocity of frame attached to body i (2x1 planar, 3x1 spatial) 

i
r  acceleration of frame attached to body i (2x1 planar, 3x1 spatial) 

i
r  jerk of frame attached to body i (2x1 planar, 3x1 spatial) 

i
r  jounce of frame attached to body i (2x1 planar, 3x1 spatial) 

P

i
r  global location of point P attached to body i (2x1 planar, 3x1 spatial) 

P

i
s '  constant location of point P on body i relative to frame attached to body i measured in 

local body-fixed directions (2x1 planar, 3x1 spatial) 

û  unit vector along fixed axis of revolute rotation driver (3x1 spatial) 

Φ  all joint and driver constraints (nc x 1) 
γ  all acceleration right-hand-side terms (nc x 1) 

η  all jerk right-hand-side terms (nc x 1) 

ν  all velocity right-hand-side terms (nc x 1) 

σ  all jounce right-hand-side terms (nc x 1) 

i
ω  angular velocity for body i measured in global directions (3x1 spatial) 

i
ω '  angular velocity for body i measured in local body-fixed directions (3x1 spatial) 

i
ω '  angular acceleration for body i measured in local body-fixed directions (3x1 spatial) 

i
ω '  angular jerk for body i measured in local body-fixed directions (3x1 spatial) 

i
ω '  angular jounce for body i measured in local body-fixed directions (3x1 spatial) 

 

matrices 
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i
A  attitude matrix for body i (2x2 planar, 3x3 spatial) 

i
B  second attitude matrix for body i (2x2 planar) 

i
H '  angular jerk product matrix for body i using components in local body-fixed directions 

(3x3 spatial) 

2
I  2x2 identity matrix 

3I  3x3 identity matrix 

R  constant orthogonal rotator matrix (2x2 planar) 

i
W'  angular jounce product matrix for body i using components in local body-fixed directions 

(3x3 spatial) 

q
Φ  Jacobian matrix containing partial derivatives of constraints Φ  with respect to 

generalized coordinates q (nc x nq) 

i
ω '  skew-symmetric angular velocity matrix for body i using components in local body-fixed 

directions (3x3 spatial) 

iω '  skew-symmetric angular acceleration matrix for body i using components in local body-

fixed directions (3x3 spatial) 

iω '  skew-symmetric angular jerk matrix for body i using components in local body-fixed 

directions (3x3 spatial) 

iω '  skew-symmetric angular jounce matrix for body i using components in local body-fixed 

directions (3x3 spatial) 

2x2
0  2x2 zero matrix 

3x3
0  3x3 zero matrix 

 

vector/matrix operations 
T

e  vector transpose for e  
T

E  matrix transpose for E  

e  skew-symmetric operator 

3 2 1

3 1 2

2 1 3

0 e e e

e 0 e for e

e e 0 e

−   
  

= − =   
  −   

e e  

 

 

 

 

 

 
 

 


